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Many techniques exist for constructing analytical approximations to the
solutions of oscillatory systems modelled by the equation

�x� x � ef �x, _x�, �1�
where e is a small and positve parameter: the Lindstedt±PoincareÂ method [1],
harmonic balancing [2], averaging techniques [3], and iteration procedures [4].
Recently, similar work has begun on systems that have large non-linearities, i.e.,
systems that do not have a linear limiting case. A particular example is the
equation

�x� x3 � m f �x, _x�: �2�
For this case, even if m is small, no standard perturbation procedure can be
applied since m=0 gives a non-linear differential equation. A ®rst attempt to
resolve this situation was provided by Mickens and Oyedeji [5]; they used a
generalized form of the ®rst approximation of Krylov and Bogoliubov [1, 3] to
derive expressions for the time derivatives of the ``averaged'' amplitude and
phase. This result was then extended by Yuste and Bejarano [6] to include the
use of Jacobi elliptic functions [7]. The most recent results have been obtained by
Senator and Bapat [8]. Their method, as presented in the paper [8], applies to
equations of the form

�x� g�x� � 0, �3�
where f (x) satis®es the condition

g�ÿx� � ÿg�x�: �4�
The purpose of this paper is to generalize the Senator±Bapat method to the

case where limit cycles are possible. In particular, the following equation is
considered:

�x� x3 � m�1ÿ x2� _x, �5�

Journal of Sound and Vibration (1999) 224(1), 167±171
Article No. jsvi.1998.2141, available online at http://www.idealibrary.com on



168 LETTERS TO THE EDITOR

where m is a small positive parameter. However, the method of this paper can
also be applied to more general forms of equation (5),

�x� g�x� � m
YN
k�1
�ak ÿ x2� _x, �6�

where {ak; k=1, 2, . . . , N} are positive parameters, m> 0, and the function g(x)
has the property given by equation (4).
Before proceeding, it should be indicated that equation (5) can be easily

shown to have a unique and stable limit cycle, for m> 0, using standard results
from the theory of differential equations. See section 2 of Appendix G in
Mickens [1].
The basis of the generalized Senator±Bapat method is to rewrite equation (5)

as

�x� fx � fxÿ x3 � m�1ÿ x2� _x, �7�
where f is, for the moment, an unspeci®ed positive constant. Next, a parameter
e is introduced, such that for e=1, the original equation (5) is obtained, i.e.,

�x� fx � e�fxÿ x3 � m�1ÿ x2� _x�: �8�
At this point, the Lindstedt±PoincareÂ method is applied to equation (8). After
calculating to the desired order in e, the resulting expression for x is determined
with e put equal to one.
The following gives a summary of the calculations for equation (8). First, x(t)

is transformed to x(y) where to order e2,

y � ot � �o0 � eo1 � e2o2 �O�e3��t, �9�

x�y� � x0�y� � ex1�y� � e2x2�y� �O�e3�, �10�
and x is taken to be periodic with period 2p in the independent variable y:

x�y� 2p� � x�y� or xk�y� 2p� � xk�y�, k � 0, 1, 2, . . . �11�
Using the notation ( 0)=d/dy and the fact that

d=dt � od=dy, �12�
equation (8) becomes

o2z00 � fx � e�fxÿ x3 � om�1ÿ x2�x0�: �13�
Substituting equations (9) and (10) into equation (8), and setting the coef®cients
of the resulting expansion in e to zero, the following relations are obtained:

e0 : o2
0x
00
0 � fx0 � 0, �14�

e : o2
0x
00
1 � fx1 � ÿ2o0o1x

00
0 � fx0 ÿ x30 � o0mx00 ÿ mo0x

2
0x
0
0, �15�
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e2 : o2
0x
00
2 � fx2 � ÿ2o0o1x

00
1 ÿ �o2

1 � 2o0o2�x000 � fx1 ÿ 3x20x1

� o0mx01 � o1mx00 ÿ 2o0x0x1x
0
0 ÿ o0x

2
0x
0
1 ÿ o1x

2
0x
0
0: �16�

The initial conditions are taken to be

x�0� � A0 � eA1 � e2A2 �O�e3�, x0�0� � 0� e � 0� e2 � 0�O�e3�, �17a, b�
where (A0, A1, A2) are, for the present, unknown constants. (See Mickens [1],
p. 60, for the details as to why this particular set of initial conditions is required.)
Thus, the initial conditions, respectively, for equations (14), (15), and (16) are

x0�0� � A0, x00�0� � 0, �18a�

x1�0� � A1, x01�0� � 0, �18b�

x2�0� � A2, x02�0� � 0: �18c�
The solution to equation (14), subject to the initial conditions of equation

(18a) and the periodicity requirement of equation (11), is

x0�y� � A0 cos y, �19�
with

o2
0 � f: �20�

The central issue is what is f2. The Senator±Bapat paper [8] gives several
suggestions for how it should be selected. The author's view is that f should
equal the square of the angular frequency, o2

HB, obtained from the application of
the lowest order harmonic balance method to equation (6) with m=0 and with
the initial conditions x(0)=A0, _x�0� � 0. Under these requirements, equation (5)
becomes

�x� x3 � 0, �21�
and

o2
HB � �34�A2

0 � f: �22�
(See Mickens [1], section 4.3.1.)
Substituting equations (19) and (22) into (15), and simplifying the resulting

expression gives

x001 � x1 � 4o1���
3
p

� �
cos y� 2m���

3
p
� �

A2
0

4
ÿ 1

� �
sin yÿ A0

3

� �
cos 3y� mA2

0

2
���
3
p

� �
sin 3y:

�23�
The elimination of secular terms in the solution for x1(y) requires

o1 � 0, A0 � 2: �24�
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Solving the resultant differential equation for x1(y), including both the particular
and homogeneous solutions [1], and enforcing the initial conditions of equation
(18b), gives

x1�y� � A1 ÿ 1

12

� �
cos y�

���
3
p

m
4

 !
sin y� 1

12

� �
cos 3yÿ m

4
���
3
p

� �
sin 3y: �25�

Note that at this stage of the calculation A0, o0 and o1 have been determined;
they are

A0 � 2, o0 �
����
f

p
�

���
3
p

, o1 � 0: �26�
It should be clear that at the order en calculation the values of Anÿ1 and on can
be determined. This is a general result which holds true for perturbation
methods applied to systems having limit cycles [1].
Carrying out the similar calculation for x2(y) gives

x002 � x2 � �4o2=
���
3
p
� 1

12ÿ 2A1 ÿ m=6� m2=4� cos y

� �1=6
���
3
p
��6A1�3ÿ m� � 2mÿ 1� sin y� �higher order harmonics�: �27�

The absence of secular terms in the solution for x2(y) gives

A1 � 1

6

� �
1ÿ 2m
3ÿ m

� �
, o2 � 1

16
���
3
p

� �
1ÿ mÿ 11m2 � 3m3

3ÿ m

� �
: �28, 29�

Thus to order e for x(y) and order e2 for o(e), the following expressions are
obtained:

x�y� � 2 cos y� e
12

� � �
2

1ÿ 2m
3ÿ m

� �
ÿ 1

� �
cos y

� �3
���
3
p
� sin y� cos 3yÿ �

���
3
p

m� sin 3y
�
�O�e2�, �30�

o�e� �
���
3
p
� �e2=17

���
3
p
���1ÿ mÿ 11m2 � 3m2�=�3ÿ m�� � o�e3�: �31�

The solution to equation (5) according to the Senator±Bapat method [8] is now
recovered by setting e=1 in equations (30) and (31). Observe that both x(y) and
o(1) are functions of m.
It should be noted that a priori the above approximation to the solution,

x(y)=x(ot), is expected to be correct only for small values of the parameter m.
However, it can be directly seen that both x(y) and o(1) vary little as m changes
value in the interval (0, 1). Denoting the coef®cient of cos y by a0(m), it follows
from equations (30) and (31) that

a0�0� � 2�0�98611�, a0�1� � 2�0�91667�, �32a�

o�1�jm�0 � �1�00694�
���
3
p

, o�1�jm�1 � �0�91667�
���
3
p

: �32b�
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These results can be compared to what is obtained from the ®rst order harmonic
balance method applied to equation (5),

x�t� � 2 cos�
���
3
p

t�; �33�
see Mickens [1], section 4.3.4, and the similar result from an averaging technique
[5]. The above calculations show that the coef®cient of the dominant lowest
harmonic changes only by about 10% in having m go from 0 to 1. A change of
equal magnitude occurs also for the angular frequency.
In summary, it has been shown that the perturbation technique of Senator and

Bapat [8] can be easily generalized to the case where not only is the non-linearity
not small, but also limit cycles exist. The possibility of further generalizing the
Senator±Bapat technique is now being investigated for inclusion in a higher
order averaging method.
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